RADIATIONLESS DEACTIVATION OF THE FLUORESCENT STATE OF 9-METHOXYANTHRACENE

S. Schoof and H. Gusten

Kernforschungszentrum Karlsruhe, Institut für Radiochemie, 7500 Karlsruhe, Postfach 3640 (F.R.G.)

The sum of the fluorescence quantum yield and the quantum yield for intersystem crossing of 9-methoxyanthracene, 9-OCD₃-anthracene and 9-OCH₃-anthracene-d₉ in n-heptane at room temperature is only ~0.60. While the fluorescence quantum yield in methylmethacrylate monomer has nearly the same value as in n-heptane in the polymer matrix of polymethylmethacrylate, the fluorescence quantum yield is twice as high as in fluid solution.

 $\label{thm:continuous} Table~l$ Fluorescence $Q_F^{}$ and triplet quantum yields $Q_{ST}^{}$ of 9-methoxy- and partially deuterated 9-methoxyanthracenes in degassed solution at room temperature

ಯೆ	Solvent	T (°C)	Q.F.	${f q}_{ m ST}$
осн ₃	n-heptane	21	0.34	0.26
оси ₃	glycerol	23	0.56	***
осн ₃	MMA 1)	22	0.23	
осн ₃	PMMA 2)	22	0.62	
OCD ₃	n-heptane	22	0.31	0.25
och ₃ -d ₉	n-heptane	21	0.33	0.23

¹⁾ methylmethacrylate monomer, 2) polymethylmethacrylate

When passing from fluid solution to the polymer matrix, an even more dramatic increase of the fluorescence quantum yield from $Q_{\rm F}=0.03$ to $Q_{\rm F}=0.53$ can be demonstrated for 9-methoxy-10-cyanoanthracene.

Unlike other substituted meso-anthracenes 9-methoxyanthracene shows an anomalous temperature dependency of the fluorescence quantum yield and fluorescence decay time in oxygen-free n-heptane (1).

An Arrhenius type plot of log (1/ τ - 1/ $\tau_{\rm F}$) versus 1/T is not linear (fig. 1).

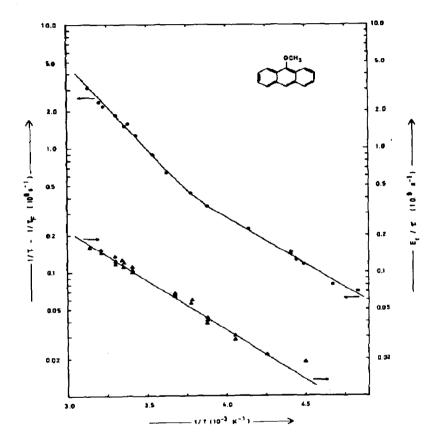


Fig. 1. Temperature dependence of $(1/\tau - 1/\tau_F)$ and triplet extinction E_t/τ in degassed n-heptane.

Since we found no indications of a photochemical process from the S_1 state in 9-methoxyanthracene we conclude that radiationless deactivation by internal conversion must occur to a large extent above -10° C. Computer variations of Eq. 1

$$1/\tau - i/\tau_{F} = A_{ST} \cdot exp\left(-\frac{E_{ST}}{RT}\right) + A_{IC} \cdot exp\left(-\frac{E_{IC}}{RT}\right)$$
 (1)

using the least squares method results

$$E_{ST} = 1200 \text{ cm}^{-1}, A_{ST} = 2.75 \times 10^{10} \text{ sec}^{-1},$$

and $E_{IC} = 2800 \text{ cm}^{-1}, A_{IC} = 5.0 \times 10^{13} \text{ sec}^{-1}$

for the best fit of the measured τ -values with temperature and

$$Q_{\rm F} = 0.35$$
; $Q_{\rm ST} = 0.33$ and $Q_{\rm TC} = 0.32$.

The frequency factor calculated for intersystem crossing $A_{ST} \sim 10^{10}\,\mathrm{sec}^{-1}$ is similar to those determined for other mesosubstituted anthracenes and is typical for a spin-forbidden process, while the abnormally high frequency factor for $A_{IC} = 5 \times 10^{13}~\mathrm{sec}^{-1}$ might reflect a value for spin-allowed S_1 - S_0 transitions. Since the deuterated 9-methoxyanthracenes yield values for Q_F and Q_{ST} which are only slightly different from the perprotonated compound (s. Table 1) the radiationless transition obviously does not proceed via C-H stretch frequencies of the aromatic skeleton as energy acceptors.

A possible mechanism for the radiationless deactivation of the S_{\parallel} state of 9-methoxyanthracene will be discussed.

S. Schoof, H. Güsten and C. von Sonntag,
 Ber. Bunsenges. phys. Chem. 81, 305 (1977)
 Die Temperaturabhängigkeit der Fluoreszenzquantenausbeuten von mesosubstituierten Anthracenen.